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Abstract Natural convection in the gap between two infinitely long horizontal coaxial cylindrical surfaces, each
of which is maintained at constant temperature, is studied. If the inverse relative gap width A is large, relevant
steady convective flow and considerable heat transfer are observed, even for extremely small Rayleigh numbers Ra.
A lower bound for the norm of the velocity and of the temperature is rigorously found by studying an approximation
problem, which is a good model in the parameter range where steady stable flow occurs. The lower bound depends
on A only, and is an increasing function of A. This means that the bound can be arbitrarily increased via the
geometry only, no matter how small the temperature difference is, and independently of the Prandtl number Pr.

Keywords Inverse relative gap width · Nusselt number · Oberbeck–Boussinesq approximation ·
Prandtl number · Rayleigh number

1 Introduction

Natural convection of Newtonian fluid in an infinitely long gap between two cylinders whose common axis is
horizontal, has been extensively investigated. It has a wide range of applications such as thermal storage plants,
thermal insulation and cooling systems. It can be studied to understand the heat transfer in such different objects,
such as nuclear reactors, electrical gas-insulated transmission lines or solar concentrators.

The energy considerations which are necessary in technology usually follow from a knowledge of the heat trans-
fer, represented by the Nusselt number. Although in the spatial configuration considered here, rigorous theoretical
estimates of the average Nusselt number are seldom provided, they can be found, for instance, in [1–3] for turbulent
convection and in [4,5] for laminar flows.
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248 A. Passerini et al.

A comprehensive review of the available experimental data and numerical results for heat transfer in a horizontal
circular annulus has been presented by Teertstra and Yovanovich [6]. In that paper, the problem is analyzed in terms
of the average Nusselt number, expressed as a function of the aspect ratio Ro/Ri and of the Rayleigh number Ra.

The average heat-transfer rate in the annulus shows two limiting cases. First, at large Rayleigh numbers and
large aspect ratios a boundary-layer behavior occurs. In this region the average Nusselt number shows a strong
dependence on Ra, but a somewhat weaker dependence on the aspect ratio, because of the relative unimportance of
the outer boundary for large aspect ratios. Second, for small values of Ra or of the aspect ratio, the average Nusselt
number shows a strong dependence on the aspect ratio, while it is almost independent of Ra.

Also, the flow patterns observed in the horizontal circular annulus have been classified by Powe et al. [7]. Depend-
ing on the Rayleigh number and the inverse relative gap width A := 2Ri/(Ro − Ri ) they found four basic types of
flow. For sufficiently small Rayleigh numbers and for any inverse relative gap width A, the flow observed is a steady
2d one, with two crescent-shaped eddies which are symmetric with respect to the vertical plane through the common
axis of the cylinders. As the Rayleigh number increases above a critical value, different unsteady flow patterns were
observed: 2d oscillatory flow for A < 2.8 (wide gap), 3d spiral flow for 2.8 < A < 8.5, 2d multi-cellular flow for
A > 8.5 (narrow gap).

The flow pattern was examined closely later by other authors; see, in particular; Yoo [8–10]. This author reports
that, if the Rayleigh number is greater than a certain critical value, dual steady solutions are realized in the flow
regime in which Powe et al. [7] asserts that a steady 2d flow prevails. One solution corresponds to the commonly
observed uni-cellular crescent-shaped pattern in which the fluid ascends along the central plane (the inner cylinder
is kept hotter). The other is a flow consisting of two counter-rotating eddies and their mirror image.

Moreover, in the narrow gap region (large A) a further transition to multi-cellular steady flows is again observed
by Yoo. Thus, this region of the parameter range has been thoroughly investigated lately (see [11,12] and related
references), since the flow of thin films shows an interesting Bénard-like behavior on the top of the annulus. One
could think of such phenomena as being due to the small curvature, which approximates the limiting case of parallel
planes. In particular, at the bottom of the domain the fluid is almost at rest, since the decrease in temperature occurs
in a direction opposite to that of the buoyancy force.

In the light of the previous observations, what should be expected for large A is a consistent convective flow, with
a fairly articulated streamline structure, as noticed in [9–12], associated with a consistent average Nusselt number,
strongly depending on A, as noticed in [6]. All these properties occur even for very small Rayleigh numbers, so
small that one would observe the fluid almost at rest if A were also small. This would happen because, as shown in
[4,5], the upper bound for the solutions (the one usually related to classical energy stability analysis as in [13, Sect.
54]) is of order Ra/b, where the parameter b := log(Ro/Ri ) = log(1 + 2/A) is large for small A. Oppositely,
in the region defined by Ra < 16 but A > 8.5, the upper bound for the solutions shows a non-negligible order of
magnitude, since b vanishes as A tends to infinity.

The aim of the present paper is to achieve a more complete theoretical prediction of this behavior by providing
estimates from below of the solutions of a simplified mathematical model. As a matter of fact, the presence of
a body-force term suggests to resort, for a full explanation, to estimates of the lower bound. Actually, whenever
a body force is present, some lower bound can always be expected, which is of particular interest in the case of
turbulent flows (see [14, Sect. 10.3]).

2 Mathematical model

In the present spatial configuration the average Nusselt number is

Nu := Ro − Ri

(To − Ti ) |A|
∫

A
∇T · n dA , (1)

where Ro and Ri are the outer and inner cylindrical radius, respectively, (see Fig. 1), while To and Ti (with To < Ti )
are the uniform, fixed surface temperatures at the outer and the inner side, respectively, and |A| stands for the
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Fig. 1 2d-sketch of the
domain in Cartesian and
polar coordinates. The fluid
moves in the shaded region
under the combined effects
of gravity g and of the
temperature difference
Ti − To > 0 between the
surfaces
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measure of either the inner or the outer surface, as we see fit. One sees from (1) that the magnitude of Nu can be
directly evaluated once the temperature distribution T (x) is known pointwise.

In fact, the velocity field and temperature are usually found as the solution of a coupled system of partial
differential equations, the Boussinesq system, representing an incompressible approximation (recently re-discussed
in [15]) of the full Navier–Stokes–Fourier system. In the present paper, the solutions to Boussinesq’s system of
equations are replaced by solutions to a further approximation, already proposed in [5,16] and reconsidered here.
Such a system, named nonlinear Stokes problem, is chosen in place of the fully linearized one, proposed in [17]
and theoretically analyzed in [4], because the fully linearized model approximates the Nusselt number too roughly.
In fact, it is proved that its solutions would produce the same Nu as for pure conduction.

Actually, in the geometry given here the theoretical study of Boussinesq’s system is a hard problem, due to the
lack of symmetry in contrast to convective motions between parallel planes. This lack of symmetry results in a
kind of body-force term. Moreover, contrary to the Bénard problem, it is impossible to solve the steady linearized
problem with suitable couples of eigenfunctions of the Stokes and Laplace operators (given in [18]). This means that
even the most simplified model problem for natural convection in horizontal annuli has not been solved analytically.
Thus, in the domains we are considering, the analytical study of the dynamical system is still in an initial phase
(see [19]).

Since all the published results [4,6–10] and references, indicate that for sufficiently small Ra, and independently
of A, a 2d steady flow is found, we write the steady version of the Boussinesq system. Moreover, to obtain dimen-
sionless equations, we choose L := Ro − Ri as typical length, Ti − To as typical temperature, and L2/κ as time
scale, respectively. Notice that, choosing cylindrical coordinates, we have for the non-dimensional radius

r ∈
(A

2
,
A
2

+ 1

)
. (2)

Hence, the system is

∇ · v = 0, (3)

− �v + ∇� + 1

Pr
v · ∇v = Ra

b
sin ϕ er + Raτ∇(r sin ϕ), (4)

v · ∇τ − vr

rb
= �τ , (5)

where, as a consequence of the particular choice of dimensionless units, we have

Ra := αg

νκ
(Ti − To)(Ro − Ri )

3, Pr := ν

κ
, (6)
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with α being volumetric expansion coefficient, g gravity acceleration, ν kinematic viscosity, and κ thermal diffu-
sivity.

Moreover, the unknown τ is defined as follows

τ := T − T ∗, with T ∗ := Ti

Ti − To
+ log Ri − log r

log Ro − log Ri
. (7)

Thus, we study τ as relevant temperature (i.e., deviation from pure conduction) and, consequently, the boundary
conditions for (3–5) are fully homogeneous:

vr

(A
2

, ϕ

)
= vr

(
1 + A

2
, ϕ

)
= 0 vϕ

(A
2

, ϕ

)
= vϕ

(
1 + A

2
, ϕ

)
= 0, (8)

τ

(A
2

, ϕ

)
= τ

(
1 + A

2
, ϕ

)
= 0 . (9)

Finally, all the functions must be periodic with respect to ϕ, otherwise the solution does not make sense physically.
In [19] it is shown that for sufficiently small Ra a solution can always be found for system (3–5). However, a

simpler system would be easier to handle. In particular, we consider the nonlinear Stokes problem

∇ · w = 0, (10)

− �w + ∇�0 = Ra

b
sin ϕ er + Raτ0∇(r sin ϕ), (11)

w · ∇τ0 − wr

rb
= �τ0, (12)

with boundary conditions (8–9) and periodicity conditions.
In [5], system (10–12) is studied as an approximation of (3–5) and the related absolute error is estimated. In

particular, associated to the dimensionless domain

�A := {(r, ϕ) ∈ R
2 : r ∈ (A/2, 1 + A/2) , ϕ ∈ (−π,+π)} , (13)

the L2-scalar product and its derived norm, defined by

(
,�) :=
∫

�A

 · �rdrdϕ, ‖
‖2 := √

(
,
) , (14)

are considered. In (14), 
 and � can be either scalar-, vector- or tensor-valued functions and the dot between 


and � denotes multiplication for scalar functions or the corresponding scalar product in case of vectors or tensors,
respectively. Next, the norm of the difference between the gradients of solutions to problems (3–5) and (10–12),
namely, the quantity ‖∇(v − w)‖2 + ‖∇(τ − τ0)‖2, is taken as a measure of the absolute error. Finally, an upper
bound for the absolute error is found; such a bound essentially depends on Pr−1(Ra/b)2. Still in [5], the absolute
error in the Nusselt number is of order Pr−1(Ra/b)3.

This is proved under an extremely restrictive condition on the range of Ra, due to the fact that Schwarz’s inequality
is too rough when dealing with coupling terms. By looking at Fig. 2, one can immediately see that the results in [5],
although rigorous, are not of much use for applications. Anyway, the bottom line of those estimates is, that for any
A, the norm of the difference can be as small as we want, provided that Ra is sufficiently small or Pr sufficiently
large.

In the present paper, we achieve, instead of the absolute error, an estimate of the relative error in the approxi-
mation. To get it, as we will see at the end of this section, a lower bound for the norm of the solutions is needed.

In Sect. 3, we provide the estimate of the lower bound for the L2-norm of the solutions of (10–12) without
any restriction on the size of our dimensionless parameters. To be more precise, what we find is a lower bound,
depending on A only, for the sum of the kinetic energy (the L2-norm of the velocity) and of the non-conductive
thermal energy. With this last expression we mean the norm of τ , since T ∗ given in (7) is the temperature field
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Fig. 2 The region below the line satisfies a sufficient
condition to get both existence of solutions and esti-
mates for the absolute error. This means that in such
a region the relative error can be estimated

Fig. 3 In the region below the line the sufficient condition is
fulfilled which ensures an approximation error less than 0.01

driven by pure conduction. Of course, a bound independent of Ra for steady solutions is an a priori bound, since
for extremely large Ra steady solutions should not exist.

On the one hand, our lower bound can immediately be applied to check the accuracy of numerical simulations
and, on the other hand, to estimate the relative error of (10–12) itself by the following scheme.

Let us consider system (10–12) and choose for its solution some norm Y , which we take as measure of the energy
associated with the convective flow. Next, let us assume that one can estimate Y from below by

Y ≥ f1(Ra,A). (15)

Further, let us indicate with �Y the norm of the difference between solutions of (3–5) and (10–12). Assume that
�Y satisfies an estimate of the kind

�Y ≤ f2(Ra, Pr,A) (16)

and let Y ′ be the norm of the solution of (3–5). Since the triangle inequality implies Y ′ ≥ Y − �Y , an estimate for
the relative error η caused by the approximation is

η := �Y

Y ′ ≤ �Y

Y − �Y
≤ f2

f1 − f2
. (17)

Obviously, this is meaningful provided that f1 > f2.
In Sect. 4, we discuss how the estimate of the relative error confirms the validity of (10–12) as good approx-

imation of the full problem. If f1 > f2, for any fluid, we can draw a region in (Ra,A)-coordinates in which the
nonlinear Stokes problem has a given precision as an approximation. In particular, after having deduced f2 from
the formerly discussed estimates available in [5], we draw, for air, a (non-optimal, of course!) region in which the
accuracy is η < 0.01 (Fig. 3).

3 Estimates from below

Our main interest in this section is to quantify the distance of the flow from the rest state by energy estimates from
below. They result from the presence of the term (Ra/b) sin ϕ er at the right-hand side of (11), which does not
involve unknown fields, so that the system is not homogeneous and the rest state is never a solution. Thus, a lower
bound for the solutions is just given by the square of the L2-norm of that term. To minimize the errors in these
estimates, we apply the Helmholtz decomposition [20, Sect. III.1],

sin ϕ er = ∇� + �, (18)
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in our non-dimensional domain � := �A, defined in (13). Its derivation and the exact expression of ∇� can be
found in Appendix 1 while the main property of the second term in (18) is, that div � = 0.

Besides, one calculates that r sin ϕ = z and ∇(r sin ϕ) = k = (0, 1)�. By directly substituting this and (18) in
Eq. (11), we find

− �w + ∇
(

�0 − Ra

b
�

)
= Ra

b
� + Raτ0k . (19)

Then, the scalar product of (19) with � in L2(�)3 reads

− (�w,�) = Ra

b
‖�‖2

2 + Ra(τ0k,�) , (20)

from which it immediately follows that

Ra

b
‖�‖2

2 ≤ |(�w,�)| + Ra|(τ0k,�)| . (21)

Now, let us prove that

(�w,�) = (w,�(sin ϕ er )) . (22)

By taking into account polar coordinates, the condition w = 0 on ∂� in particular implies ∂ϕw = 0 on the boundary
(this is the tangential derivative on ∂� and we are dealing with smooth functions). Therefore, by the constraint

0 = ∇ · w = ∂rwr + wr

r
+ 1

r
∂ϕwϕ (23)

it follows that also ∂rwr = 0 on the boundary.
Consequently, by the Gauss theorem together with the previous deductions as well as the orthogonality property

related to (18) and the (obvious) property ∇ · �w = 0, we can directly evaluate
∫

�

(�w) · � =
∫

�

(∑
i

∂i∂i w

)
· sin ϕ er (24)

=
∫

∂�

sin ϕ n · (∇w · er ) −
∫

�

∇w : ∇(sin ϕ er ) (25)

=
∫

∂�

sin ϕ n · (∇wr − ∇er · w
) −

∫
�

∇w : ∇(sin ϕ er ) (26)

= −
∫

∂�

n · (∇(sin ϕ er ) · w) +
∫

�

�(sin ϕ er ) · w, (27)

=
∫

�

�(sin ϕ er ) · w, (28)

which proves Eq. (22) (it is understood that n = ±er depending on which part of the boundary is considered and
we omit the obvious element of integration). Finally, (21) implies

Ra

b
‖�‖2

2 ≤ ‖w‖2‖�(sin ϕ er )‖2 + Ra‖τ0‖2‖k · �‖2 . (29)

Now, from Appendices 1 and 2 we make use of the following results

(59) : ‖�(sin ϕ er )‖2 = 8

√
π(A + 1)

A(A + 2)
,

(69) : ‖�‖2
2 = π

32(A + 1)
(36(A + 1)2 − b2A2(A + 2)2),
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(73) : ‖k · �‖2 =
√

π

32(A + 1)

(
35(A + 1)2 − 3

b2A2(A + 2)2

4

)

to rewrite (29) as

Ra

b

π

32(A + 1)
(36(A + 1)2 − b2A2(A + 2)2) ≤ 8

√
π(A + 1)

A(A + 2)
‖w‖2

+Ra

√
π

32(A + 1)

(
35(A + 1)2 − 3b2A2(A + 2)2

4

)
‖τ0‖2 . (30)

By comparing the coefficients at the right-hand side of (30) for large A, since for any fixed Ra the coefficient of
‖τ0‖2 prevails provided A is sufficiently large, we get

2

b

√
π

32(A + 1)

36(A + 1)2 − b2A2(A + 2)2√
140(A + 1)2 − 3b2A2(A + 2)2

≤ ‖w‖2 + ‖τ0‖2 . (31)

In order to understand the asymptotic behavior of the lower bound in (31), it is sufficient to point out that, as A
tends to infinity, b tends to zero while bA tends to 2.

Inequality (31) shows that the intensity of the convective flow grows with A. This growth has no upper bound,
no matter how small the temperature difference is and independently of the Prandtl number. Obviously, one should
ask whether, in such a situation, the internal dissipation can be neglected, and the Oberbeck–Boussinesq model is
appropriate.

On the other hand, we proved this result by considering an approximation of the Oberbeck–Boussinesq model.
In the next section, we show how (31) can be used to justify and quantify this approximation.

4 Evaluation of the error of the approximation

The region of the non-dimensional parameter range investigated in the present section is far from being optimal for
any application. Nevertheless, since in the literature the approximations are usually considered without theoretically
quantifying the related error, we like to present a region of the (A, Ra)-plane, in which the natural convection of
air (Pr = 0.7) can be studied by means of the nonlinear Stokes problem (10–12) while the error is smaller than
0.01. With the same technique one can find the corresponding region for any fluid and any precision. Actually, we
evaluate the error

η = �Y

Y ′ := ‖u‖2 + ‖σ‖2

‖v‖2 + ‖τ‖2
(32)

with u := v − w and σ := τ − τ0, where (v, τ ) and (w, τ0) are solutions of (3–5) and of (10–12), respectively. The
gradients of the differences are estimated in [5], under a smallness condition on Ra.

By specifying the general considerations given in our introduction, we derive a bound for η. In doing this, we
use the triangle as well as the Poincaré inequality

‖ f ‖2 ≤ kp‖∇ f ‖2 , (33)

which holds for any function f vanishing on the boundary for which the L2-norm of ∇ f is bounded. As proved in
[4], the best general expression for the so-called Poincaré constant kp in the region where A is large is

kl
p = 1

2

√
1 + 2

A . (34)

Now, we can rewrite (32) as

η ≤ kl
p(‖∇u‖2 + ‖∇σ‖2)

‖w‖2 + ‖τ0‖2 − kl
p(‖∇u‖2 + ‖∇σ‖2)

. (35)
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From (35) it immediately follows that if

kl
p(‖∇u‖2 + ‖∇σ‖2)

‖w‖2 + ‖τ0‖2
<

1

101
, (36)

then η < 0.01. Thus, we will use (34) and suitable estimates in order to rewrite the left-hand side of (36) as a function
of A and Ra, while Pr = 0.7. Finally, we draw the curve for the upper bound of Ra satisfying (36).

However, in [5] the estimates for the gradients of the differences can be written only under a preliminary restric-
tive condition on Ra. In Appendix 3, after having recalled the existence conditions for solutions of system (3–5)
[the same as for (10–12)], we show that estimates for the gradient of the difference between the solutions of the full
system and the ones of the approximation system can be written when the following sufficient condition is satisfied

Ra <
28

27

log
(
1 + 2

A
)

(
1 + 2

A
) √

π
√

1 + A . (37)

Condition (37) defines the region below the line in Fig. 2. By substituting in (36) the following estimates
from [5]

‖∇u‖2 ≤ 1

α0

(kl
p)

3γ 2

√
2δ2

0

1

Pr

Ra2

b2 , (38)

‖∇σ‖2 ≤ 1

α0

√
2(kl

p)
5γ 2

Abδ2
0

(
1 + (kl

p)
2Raγ

b
√

2δ0

)
1

Pr

Ra2

b2 , (39)

where α0, δ0 and γ (all equivalent to constants in the considered parameter range) are defined in Appendix 3, we
see that the precision requirement (36) is satisfied if

f (A)Ra2

7b − g(A)Ra
− 1

101
< 0 , (40)

where

g(A) := 27(kl
p)

2
√

π(A + 1) (41)

and

f (A) := 160
√

(A + 1)(140(A + 1)2 − 3b2A2(A + 2)2)√
π(36(A + 1)2 − b2A2(A + 2)2)Ab2

× (kl
p)

4γ 2
(
Ab2 + √

2(kl
p)

2(
√

2b + 2(kl
p)

2γ RM )
)

.

(42)

In the latter RM := 3.25 × 10−2 corresponds to the maximum value of Ra in (37) which is attained for A = 8.5.
Condition (40) is nothing else than a sufficient condition for (36) and is introduced just to simplify some calculation.

The function Ra(A) defining the boundary of the 0.01-approximation region identified by (40–42) can be eval-
uated numerically since inequality (40) is equivalent to

Ra <
−g(A) + √

g2(A) + 2828b f (A)

202 f (A)
and Ra > 7

b

g(A)
. (43)

The first condition in (43) gives rise to Fig. 3, which identifies a subset of the region depicted in Fig. 2 in which
both steady solutions and estimates for the differences are available and, moreover, the error in the approximation
is less than 0.01.

5 Concluding remarks

In the present paper, through a lower bound independent of Ra, we have described some particular features of
natural convection in thin cylindrical gaps: in fact, for large A, the convective flow is always rather consistent, even
for small Ra, and several transitions to multicellular flow are observed.
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To be more precise, by discussing (30) one sees that for any arbitrary Ra∗ > 0 a number A(Ra∗) can be found
such that the steady solutions of the nonlinear Stokes problem satisfy the estimate (31) for all A > A(Ra∗) and all
Ra < Ra∗. Moreover, the lower bound in (31) increases with A and independent of Ra.

Our studies are, generally speaking, oriented to collect exact results on the dynamical system, in order to identify
as much as possible the “size” and the features of the solutions, depending on the relevant dimensionless parameters.
Of course, a big goal would be a mathematical characterization of the different transitions, allowing to predict the
critical value of the parameters. But this can be done only through small steps.

At the moment, we think that with techniques similar to those of the present paper, a lower bound can be found
in the 3d case as well as for the full Boussinesq system. Of course, here one has to find a way to treat the nonlinear
term in the momentum equation and, in principle, a bound depending on Pr is expected.

Another interesting topic one may address, is the investigation of the large gap configuration, namely, the region
given by small A. In such a region the stable (observed) motions are still 2d and still steady, even for very large Ra.
Then, one might try to consider a different approximation problem, the decoupled problem studied in [5], which
has the desirable feature of allowing steady solutions in any region of the parameter space.

Such a system is obtained by leaving out the coupling term in the momentum equation. For small Ra, this is
justified by realizing that the solution is small and, therefore, owing to multiplication by Ra, the coupling term is
smaller (i.e., small in a nonlinear way).

Also, it is easy to show that any solution of the decoupled problem has the nature of an upward flow, similarly
to the basic flow found in [8]. That flow is stable for values of Ra that are as large as we want provided A is small
enough. Under this last condition a lower bound should be easily found.

Acknowledgements The authors thank the reviewers for valuable advice concerning the comprehensibility of the paper and
cross-linking to other research. We are particularly grateful to the third one for very precise remarks showing an honest interest in
our results.

Appendix 1: Helmholtz decomposition of the body force

Taking the divergence of the Helmholtz decomposition (18) gives rise to the Neumann problem

∇ · (sin ϕ er ) = �� in �, ∇� · n = 0 on ∂� , (44)

where the condition ∇ · � = 0 in � is used as well. Moreover, since

∇ · (sin ϕ er ) = 1

r
sin ϕ , (45)

the above equation for � can be reduced to a second-order differential equation for f (r), by the help of the ansatz

� = f (r) sin ϕ, (46)

The result is

r2 f
′′ + r f ′ − f = r , (47)

which is an Euler–Cauchy equation whose general solution has the form

f (r) = C1r + C2

r
+ r

2
log r . (48)

By imposing the boundary condition ∇� · n = 0 on � = f sin ϕ, we find for the constants C1 and C2 the relations

C1 − 4C2

(A + 2)2 + 1

2
log

A + 2

2
+ 1

2
= 0, (49)

C1 − 4C2

A2 + 1

2
log

A
2

+ 1

2
= 0 . (50)
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Hence

C1 = −b

8

(A + 2)2

A + 1
− 1

2

(
log

A
2

+ 1

)
, C2 = − b

32

A2(A + 2)2

A + 1
. (51)

Consequently, for ∇� and then for � we calculate

∇� = (∂r�) er +
(

1

r
∂ϕ�

)
eϕ (52)

=
(

C1 − C2

r2 + 1

2
log r + 1

2

)
sin ϕ er +

(
C1 + C2

r2 + 1

2
log r

)
cos ϕ eϕ (53)

� = sin ϕ er − ∇� (54)

=
(

1

2
− C1 + C2

r2 − 1

2
log r

)
sin ϕ er −

(
C1 + C2

r2 + 1

2
log r

)
cos ϕ eϕ . (55)

Moreover, by taking into account k = sin ϕer + cos ϕeϕ , we deduce

� · k =
(

1

2
− C1 + C2

r2 − 1

2
log r

)
sin2 ϕ −

(
C1 + C2

r2 + 1

2
log r

)
cos2 ϕ (56)

= −C1 − 1

2
log r − C2

r2 cos 2ϕ + 1

2
sin2 ϕ . (57)

In Appendix 2, we will calculate the L2-norms of � and of � · k. Moreover, in order to complete the analysis of
inequality (29), we also have to evaluate the norm of

�(sin ϕ er ) = 2

r2 (− sin 2ϕ, cos 2ϕ)� . (58)

It is easy to see that

∫
�

|�(sin ϕ er )|2rdrdϕ =
∫ A+2

2

A
2

∫ π

−π

4

r4 rdrdϕ = 4π

∣∣∣∣− 1

r2

∣∣∣∣
1+ A

2

A
2

(59)

= 64π
(A + 1)

A2(A + 2)2 . (60)

Appendix 2: Auxiliary calculations

In what follows, log A+2
2 will be replaced by

(
b + log A

2

)
. We calculate

∫ 1+ A
2

A
2

1

r
dr = b,

∫ 1+ A
2

A
2

r2dr = A + 1, (61)

∫ 1+ A
2

A
2

1

r3 dr = 8(A + 1)

A2(A + 2)2 , (62)

∫ 1+ A
2

A
2

r log rdr = 1

2

(A2

4
b + (A + 1)

(
b + log

A
2

))
− 1

4
(A + 1), (63)
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∫ 1+ A
2

A
2

r log2 rdr = 1

2

(A2b

4

(
b + 2 log

A
2

)
+ (A + 1)

(
b + log

A
2

)2)

−1

2

(A2b

4
+ (A + 1)

(
b + log

A
2

))
+ 1

4
(A + 1) . (64)

We continue by computing

� · � = C2
2

r4 + 1

4
log2 r + 2

C2

r2

(
C1 + 1

2
log r

)
cos 2ϕ + sin2 ϕ

(
1

4
− C1 + C2

r2 − 1

2
log r

)
+ C2

1 + C1 log r,

(65)

π∫

−π

|�|2dϕ = 2π

(
C2

1 + C2
2

r4 + 1

4
log2 r + C1 log r

)
+ π

(
1

4
− C1 + C2

r2 − 1

2
log r

)
. (66)

Consequently,

‖�‖2
2 =

∫ A+2
2

A
2

∫ π

−π

r |�|2drdϕ (67)

= π

(
2C2

1 + 1

4
− C1

) A + 1

2
+ πC2b + 16πC2

2
A + 1

A2(A + 2)2 +

+π

(
C1 − 1

4

) (A2

4
b + (A + 1)

(
b + log

A
2

)
− (A + 1)

2

)
+

+π

4

∣∣∣r2 log2 r
∣∣∣

A+2
2

A
2

− π

4

(A2

4
b + (A + 1)

(
b + log

A
2

)
− (A + 1)

2

)
. (68)

After replacing C1 and C2 and another line of calculation, we have

‖�‖2
2 = π

8

(
9(A + 1) − b2A2(A + 2)2

4(A + 1)

)
. (69)

Likewise, for
∫ π

−π
(� · k)2dϕ =: I , then

I = π

(
2C2

1 + log2 r

2
+ C2

2

r4 + 3

16
− C1 +

(
2C1 − 1

2

)
log r + C2

2r2

)
, (70)

2

π
‖� · k‖2

2 =
(

2C2
1 − C1 + 3

16

)
(A + 1) + C2b + 16C2

2 (A + 1)

A2(A + 2)2

+
(

2C1 − 1

2

) (A2

4
b + (A + 1)

(
b + log

A
2

)
− (A + 1)

2

)

+1

2

(
A2

4
b

(
b + 2 log

A
2

)
+ (A + 1)

(
b + log

A
2

)2
)

−1

2

(A2

4
b + (A + 1)

(
b + log

A
2

)
− (A + 1)

2

)
(71)

= b2

32

(A + 2)4

(A + 1)
+ 35

16
(A + 1) + b

2
(A + 2)2 − b2 A2(A + 2)2

64(A + 1)

−b2 A2(A + 2)2

16(A + 1)
− A2

4
b − b2

4
(A + 2)2 − b(A + 1)

−A2

4
b − b(A + 1) + A2

8
b2 + 1

2
(A + 1)b2. (72)
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Hence, we obtain

‖� · k‖2
2 = π

32(A + 1)

(
35(A + 1)2 − 3

b2A2(A + 2)2

4

)
. (73)

Appendix 3: Necessary conditions for the existence of solutions

We now recall the results obtained in [5]. Let us start discussing the condition of existence for steady solutions of
both (3–5) and (10–12): definition (2.3) in [5] implies that by choosing

δ0 := 1 − 2(kl
p)

4Ra

Ab
>

1

2
, (74)

we find

Ra <
4A3

(A + 2)2 log

(
1 + 2

A
)

, (75)

and δ0 > 0 is the sufficient condition of existence. Next, we recall and discuss the sufficient condition allowing to

write estimates for the difference of the two problems. For convenience we abbreviate γ :=
√

π
(

1+A
2

)
. Then

definition (2.12) in [5],

α0 := δ0 − (kl
p)

2

b
√

2

γ

δ0
Ra

(
1

Pr
+ 1 − δ0

)
, (76)

implies that if δ0 > 1
2 and Pr = 0.7, then the inequality

α0 >
1

2
− 27

14

(
1 + 2

A
) √

π
√

1 + A
4 log

(
1 + 2

A
)Ra (77)

holds true for any values of A and Ra. The condition α0 > 0 allows to write the estimates for the differences. Then,
α0 is certainly positive if

Ra <
28

27

log
(
1 + 2

A
)

(
1 + 2

A
) √

π
√

1 + A . (78)

The latter two inequalities together define a region in which the error can be estimated. Finally, since (75) is a
weaker condition, we retain (78) only.
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